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Jeffrey L Krichmar1,2

Abstract
Game theory is commonly used to study social behavior in cooperative or competitive situations. One socioeconomic
game, Stag Hunt, involves the trade-off between social and individual benefit by offering the option to hunt a low-payoff
hare alone or a high-payoff stag cooperatively. Stag Hunt encourages the creation of social contracts as a result of the
payoff matrix, which favors cooperation. By playing Stag Hunt with set-strategy computer agents, the social component
is degraded because of the inability of subjects to dynamically affect the outcomes of iterated games, as would be the
case when playing against another subject. However, playing with an adapting agent has the potential to evoke unique
and complex reactions in subjects because of its ability to change its own strategy based on its experience over time,
both within and between games. In the present study, 40 subjects played the iterated Stag Hunt with five agents differing
in strategy: exclusive hare hunting, exclusive stag hunting, random, Win-Stay-Lose-Shift, and adapting. The results indi-
cated that the adapting agent caused subjects to spend more time and effort in each game, exhibiting a more complicated
path to their destination. This suggests that adapting agents exhibit behavior similar to human opponents, evoking more
natural social responses in subjects.

Keywords
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1 Introduction

On a day-to-day basis, living things utilize cooperation
and competition to reach a desired outcome. Because
of this common dynamic, social behavior in coopera-
tive and competitive situations has become a popular
field of study. The use of games in social behavior
experiments can give insight into the interactive
dynamics between players, as well as their decision-
making processes. Such games can highlight individual
and group differences in a controlled and highly custo-
mizable environment. Game theory provides additional
benefits, as it includes tools to predict behavior and
decision-making by assuming players will attempt to
achieve the most desirable outcome (D. Lee, 2008).
Games are especially useful when considering the topic
of social behavior from a human–computer interaction
(HCI) standpoint. Because games provide a clearly
defined state space and set of rules, they are amenable
to providing a framework for humans to interact
with computers as partners or opponents. The
Prisoner’s Dilemma, Ultimatum Game, Trust Game,

Hawk–Dove, and Stag Hunt are among the most pro-
minent games used to research social behavior in HCI.

In a study conducted by Kiesler, Sproull, and
Waters (1996), the Prisoner’s Dilemma was used to
determine the differences in cooperation between
humans and different types of computer opponents. In
the Prisoner’s Dilemma, two players must decide to
either ‘‘rat out’’ their opponent or to keep quiet, a deci-
sion that affects each player’s ‘‘sentencing,’’ or personal
cost. In these experiments, subjects played against three
types of computer opponents: text-based, electronically
generated speech-based, and electronically generated
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face- and speech-based. The text-based opponent inter-
acted with the human player through text messages,
while the speech-based opponents used computer-
generated audio. The face- and speech-based opponent
was accompanied by a semi-realistic animated human
face synched up to the audio component. The com-
puter opponents were programmed to cooperate in
four out of six trials. While the speech-based and face-
and speech-based computer opponents were largely
unable to garner trust in players (likely stemming from
an uncanny valley effect), the text-based computer
opponent was able to encourage the same rate of coop-
eration in subjects as human opponents. This finding
suggests that human players are able to respond proso-
cially to some forms of computer opponents.

The Ultimatum Game is similar to the Prisoner’s
Dilemma in that they both explore players’ intentions
to cooperate or compete. However, in the Ultimatum
Game, two players must decide how to divide a sum of
money amongst themselves. In an experiment con-
ducted by Rilling, Sanfey, Aronson, Nystrom, and
Cohen (2004), both the Prisoner’s Dilemma and the
Ultimatum Game were used in order to gain insight
into the difference between interactions with a human
or computer partner in terms of ‘‘theory of mind,’’ or
one’s conception of another person’s thoughts and
mental state in a social capacity. In this version of the
Prisoner’s Dilemma, cooperative payoffs were inflated
to encourage cooperation. Results indicated that sub-
jects were more likely to accept unfair behavior from a
computer player rather than a human player (Rilling et
al., 2004). This suggests that human subjects did not
hold their computer opponents to the same social con-
structs they held other humans to, alluding to the issue
of not considering the computer opponents used in
these experiments as socially equal. Similar to the
Ultimatum Game, the Trust Game leaves two players
the task of splitting a resource, with one player ulti-
mately deciding how much each player receives
(Anderhub, Engelmann, & Güth, 2002). In McCabe,
Houser, Ryan, Smith, and Trouard (2001), subjects
played the Trust Game with both human and computer
player conditions. The computer player used a prob-
abilistic model, the choice probabilities of which were
shown to the subjects. Functional MRI (fMRI) results
uncovered neural correlates indicating that the active
brain areas involved varied between the two opponent
types. While both player conditions engaged the pre-
frontal cortex in order to form a mental picture of the
other player’s state of mind, human opponents evoked
higher prefrontal cortex activation and more coopera-
tion attempts in some subjects.

It is important to note that these example experi-
ments using the Prisoner’s Dilemma and the
Ultimatum Game paradigms have utilized either set
strategies or preprogrammed responses in their com-
puter agents. However, an agent with an adaptive

strategy, one that learns in real-time while playing a
game with another, might produce results that not only
engage the human player in a higher capacity, but may
also emulate human players enough to evoke strong
social responses that influence behavior during play.
Along these lines, Asher and colleagues introduced
embodied, neurobiologically plausible models of action
selection and neuromodulation with the ability to
adapt to their opponent’s behavior while playing the
game Hawk–Dove (Asher, Zaldivar, Barton, Brewer, &
Krichmar, 2012; Asher, Zhang, Zaldivar, Lee, &
Krichmar, 2012). These models incorporated the roles
of the dopaminergic and serotonergic neuromodulatory
systems in tracking expected rewards and costs, respec-
tively. Because of their adaptive nature and physical
embodiment, these models evoked interesting, strong,
and complex responses from subjects. The Hawk–Dove
game consisted of a human and a neural agent choos-
ing either to share (Display) or fight (Escalate) for a
valued resource. Whereas an unchallenged escalation
(one subject escalates, the other displays) resulted in
the escalating subject receiving the total value of the
resource, a challenged escalation (where both subjects
escalate) resulted in a costly penalty. If both subjects
displayed, they shared the value of the resource. Thus,
this paradigm optimizes investigation into risk-taking
and cooperative behavior.

In order to study the effects of embodiment, subjects
played Hawk–Dove games against both a simulated
computer agent and an autonomous, physical robot
(Asher, Zaldivar, et al., 2012; Asher, Zhang, et al.,
2012). In both cases, in order to probe the neuromodu-
latory mechanisms that give rise to cooperative and
competitive behaviors, subjects played against a model
with an intact serotonergic system and a lesioned sero-
tonergic system, the latter of which typically made the
agent play more aggressively. To impair the human
player’s serotonergic system, subjects underwent an
acute tryptophan depletion (ATD) procedure, which
temporarily lowered serotonin levels and has been
shown to reduce cooperation in the Prisoner’s Dilemma
game (Wood, Rilling, Sanfey, Bhagwagar, & Rogers,
2006). Subjects adjusted their strategies depending on
the type of agent they played. Subjects exhibited a sig-
nificant shift from a Win–Stay–Lose–Shift (WSLS)
strategy against an intact agent to a Tit-for-Tat (T4T)
strategy against an agent that was more aggressive due
to lesions of its simulated serotonergic system. This
strategy change suggested that subjects were sending a
message to the aggressive agent that they were being
treated unfairly.

In the Asher et al. study, two groups best described
individual subject’s responses. ATD caused some sub-
jects to be more aggressive, but others to be less aggres-
sive, as seen by their probability to escalate a fight.
A similar trend of two polarized subject groups was
observed when considering the effect of physical
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embodiment on game play. This study showed that an
adaptive agent could evoke strong, varied responses in
subjects (Asher, Zhang, et al., 2012). This suggests that
there might be underlying biological or experiential fac-
tors leading to subject-specific tendencies and or phe-
notypes in social situations.

In the present study, we are interested in moving
beyond games that focus on the competition between
players, to explore teamwork and social signaling
among players by using the socioeconomic game known
as the Stag Hunt (Skyrms, 2004). In the game of Stag
Hunt, two players decide whether to hunt a high-payoff
stag cooperatively or a low-payoff hare individually. As
described in detail in Scholz and Whiteman (2010), the
risk in this game is that both players must decide to
hunt the stag in order to catch it. In the case that both
players hunt the stag, both are awarded a high payoff.
However, if only one player decides to hunt the stag
while the other hunts a hare, the player who hunted the
stag gets no payoff and the player who hunted the hare
obtains a small payoff. Thus, success in the Stag Hunt
requires the ability to make a social contract with
another player and form a representation of another’s
intentions.

The Stag Hunt has recently been used to test theory
of mind assumptions, both through modeling and by
human subjects against computer agents (Yoshida,
Seymour, Friston, & Dolan, 2010; Yoshida, Dolan, &
Friston, 2008). In Yoshida and colleagues’ experiment,
subjects played Stag Hunt with a computer agent pos-
sessing one of three levels of sophistication, defined by
the number of levels of reciprocal belief inference used
by the model. Players were not aware of the level of
sophistication used by the agent. Their fMRI results
showed that rostral medial prefrontal cortex, a brain
region consistently identified in psychological tasks
requiring mentalizing, had a specific role in encoding
the uncertainty of the other’s strategy, and that the
dorsolateral prefrontal cortex encoded the depth of
recursion of the strategy being used. Their study
demonstrates that socioeconomic games like the Stag
Hunt and sophisticated computer agents can provide
an excellent environment for investigating the forma-
tion of social contracts, decision-making, and theory of
mind.

A major goal of the present study is to show that an
agent with the ability to adapt to another player’s
gameplay more effectively challenges a subject. In
many HCI games, subjects play against computer
opponents with static strategies, which may not chal-
lenge subjects in a natural way. A simulated agent with
the ability to adapt to its opponent’s behavior has the
potential to evoke more complex and interesting results
in subjects than these set-strategy agents used in the
studies described above. Such an adaptive system may
be a more informative probe for investigating human
behavior under challenging conditions. The use of

adaptive agents provides a controlled way to make sub-
jects believe they are playing against an intelligent
opponent. Moreover, incorporating the adaptive beha-
vior cultivated through subjects into future simulated
agents may lead to HCI systems that interact more
naturally with people.

To move beyond the more simplistic and commonly
used paradigm of game play against agents with set-
strategies, the present study investigated the social and
behavioral effects of an adaptive agent on human sub-
jects within the highly social Stag Hunt game environ-
ment. In order to compare pre-set and adaptive agent
paradigms, human subjects played a computerized ver-
sion of the game with five different strategies: exclusive
hare hunting (EQHare), exclusive stag hunting
(EQStag), random, WSLS, and an adaptive agent. The
adaptive agent was implemented with an Actor–Critic
model that took into account the costs and benefits of
moves. Our results show that such an adaptive agent is
able to evoke a response in subjects that is significantly
different from those produced by set-strategy para-
digms. Subjects spend more time and effort when play-
ing against an adaptive agent, following more complex
paths to their targets. Thus, such adaptive agents have
the potential to be used in social situations as a partner
or opponent akin to another human player, while
allowing for greater control.

2 Methods

2.1 Human participants

Forty subjects (age range: 18–25) were recruited
through an online database maintained by the
Experimental Social Science Laboratory (ESSL) at the
University of California, Irvine (UCI). The subject
database is comprised of currently enrolled undergrad-
uate and graduate students from UCI who have volun-
teered to be contacted for and participate in
socioeconomic experiments within the UCI School of
Social Sciences. In this recruiting database, there is no
screening for race, gender or other background charac-
teristics. Subjects had not previously participated in the
same experiment. The experimental protocol was
approved by the Institutional Review Board at
University of California, Irvine, and informed consent
was obtained from all subjects. Two subjects did not
appear to understand the instructions for the majority
of the experiment; their data were removed before
analysis.

2.2 Computer interface for the Stag Hunt

Subjects played a variant of the Stag Hunt game
against simulated agents, which was similar to the game
used by Yoshida and colleagues (2010). This version of
the Stag Hunt game differed from the traditional
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version through the addition of spatial and temporal
components to the game. The spatial component con-
sisted of a game board with tokens, both for the players
and for the stag and hare prey, such that the players
needed to traverse squares on the board in order to
reach and capture their prey. The temporal component
was a byproduct of this game environment, in that it
took a variable amount of time in each game to reach
and capture prey. This non-standard approach was
used in order to provide more measurable differences
in human behavior beyond the record of the action
choices themselves (e.g., reaction time, number of
turns, path on gameboard, etc.). However, the present
version retains the stag and hare equilibriums of the
original version of Stag Hunt.

The computer interface consisted of a 535 grid on
which a stag token, two hare tokens, a subject token,
and an agent token were placed (Figure 1). The two hare
tokens were placed on the middle square of the left and
right columns for every game while the stag, subject,

and agent tokens were randomly placed on a square
residing within the first row, last row, or center column
of the game grid. This precaution ensured that the play-
ers and the stag would not begin a game right next to a
hare. Player tokens were prevented from being initially
placed directly next to or on top of a stag or each other.

Each participant controlled the subject token
through left mouse clicks to adjacent squares on the
grid to hunt either the stag or hare token. Moves were
executed simultaneously between players (i.e., were not
limited to turns), and each subject’s moves took effect
instantaneously. Computer agents moved every 600
ms, which was shown in software testing to create a
reasonable level of difficulty (assessed by near-equal
agent/subject point totals in non-expert players).
Subjects were capable of moving quickly (’200 ms),
but often took more time in deciding moves. In order
to hunt a hare, the subject token needed to occupy the
same square as a hare token (Figure 2). A subject made
a right mouse click on the currently occupied hare
square to catch the hare. In the event that both players
tried to catch a hare at the same time, the player that
made the first click caught the hare. In order to hunt a
stag, the subject and agent tokens needed to occupy
squares adjacent to the stag token vertically,

Figure 1. Screenshot of Stag Hunt game board. The game
board included a 5× 5 grid of spaces upon which the player
(stick figure image), agent (robot image), stag (stag image), and
hare (hare image) tokens resided. The screen included a button
to start the experiment, the subject’s score for the round, the
subject’s overall score for the experiment, the game number
within the round, a 3-second countdown to the start of the
game, and a 10-second counter monitoring the game’s timeout.
At the beginning of each game, the locations for the stag, player,
and agent tokens were randomly placed along either the top
row, bottom row, or middle column at least one square away
from each other. The initial positions of the hares were fixed in
the locations shown above for all games. The player and agent
could move one square at a time towards their goal at the start
of the game, while the targets remain fixed.

Figure 2. Screenshot of hare capture. Players moved towards a
target by performing consecutive left mouse clicks on adjacent
squares until they had arrived at their target. In order to catch a
hare, the player needed to be on top of the hare so that the image
displayed both the player’s and the hare’s tokens. The player then
performed a right mouse click on top of the current square to
catch it. In the case that both players were on a hare square, the
first player to click on the hare caught it. When a player caught a
hare, that player won one point and the current game ended.
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horizontally, or diagonally (Figure 3). A subject made
a right mouse click on the stag square in order to catch
it. It was not sufficient for both players to merely be
next to the stag; they both needed to indicate their
intentions to catch the stag. As soon as a hare or stag
was caught, the game ended. Catching a stag awarded
each player four points, while catching a hare awarded
the successful player one point and the unsuccessful
player zero points (see payoff matrix in Table 1).
During the games, the subjects saw their total scores
for the current round as well as a 10-second countdown
timer that provided a time limit for each game. If a
game lasted over 10 seconds, no payoffs were given. At
the end of each round, the subject was shown their
total scores summed over all rounds already played.
Subjects were not shown the score of the agent in order
to prevent unnecessary competition.

2.3 Agents for the Stag Hunt

For each of the 250 games of the Stag Hunt, the agent
played one of the following five strategies: EQStag,
EQHare, Random, Win–Stay–Lose–Shift (WSLS), and
Adapt. EQStag agents always hunted stags, while

EQHare agents always hunted hares. The Random
agent had an equal probability of hunting a hare or a
stag in each game. The WSLS agent chose either hare or
stag randomly in its first game, switching to the other
target after losing a game and repeating its choice after
winning a game. The Adapt agent began its first game
with no choice preference or strategy, and developed its
strategy through an Actor–Critic model that is described
below. The rounds were presented in random order for
each subject, and all subjects played against every agent
strategy. No significant order effects were found.

During the round in which the subject played against
the Adapt agent, an Actor–Critic model was employed,
which learned the appropriate actions based on the
rewards and penalties acquired during a series of Stag
Hunt games.

The model updated state tables for a Reward Critic,
Cost Critic, and Actor. Each state was designated by:
(1) the player’s distance from hare, (2) the agent’s dis-
tance from hare, (3) the player’s distance from stag, and
(4) the agent’s distance from stag. The distances were
calculated using Euclidean distance and then truncated
to the nearest integer value. Player tokens could be, at
most, five squares from the stag and three from the
nearest hare, to give 225 possible states in each table.

The Reward Critic state table contained a weight
that corresponded to the expected reward at the current
state. Reward was defined as the payoff received at the
end of a game as given by the payoff matrix (Table 1).
Similarly, the Cost Critic state table contained a weight
that corresponded to the expected cost at the current
state. Cost was defined as the perceived loss on a hunt.
For example, if the Agent was hunting a stag and the
human caught a hare, the cost would be 24 (Table 1).
The Actor state table contained two weights for each
state: one for the likelihood to hunt hare and the other
for the likelihood to hunt stag in a given state. The
Adapt agent was naı̈ve for each subject at the begin-
ning of the experiment, meaning that the state tables
were initialized to zero.

After each move made by either player, the Actor–
Critic model state tables were governed by the follow-
ing equations.

The Actor–Critic weights depended on a delta rule
that calculated an error prediction:

d tð Þ= r tð Þ+V s, tð Þ � V s, t � 1)ð Þ ð1Þ

Figure 3. Screenshot of stag capture. In order to catch a stag,
both the player and agent tokens needed to be in squares
adjacent to the stag token, whether horizontally, vertically, or
diagonally adjacent. Both the player and the agent required the
intention of catching a stag. It was not sufficient to simply pass
next to the stag while the other player intended to catch it.
Once both players were adjacent to the stag and had the
intention to catch the stag, the human player performed a right
mouse click on top of the stag in order to catch it. Catching a
stag awarded both players four points each.

Table 1. Payoff matrix of Stag Hunt.

Agent hunts Stag Agent hunts Hare

Player hunts Stag Agent: 4 pts
Player: 4 pts

Agent: 1 pt
Player: 0 pts

Player hunts Hare Agent: 0 pts
Player: 1 pt

First to catch: 1 pt
Other: 0 pts
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where r tð Þ was either the reward or cost at time t,
V s, tð Þ was the Critic’s weight at state s, at time t, and
V s, t � 1ð Þ was the Critic’s weight for the previous time-
step. r tð Þ for the Reward Critic was given as:

rrwd tð Þ=
4; if caught stag at time t

1; if caught hare at time t

0; otherwise

8<
: ð2Þ

r tð Þ for the Cost Critic was given as:

rcost tð Þ=

�4; if hunting stag and other player

caught prey at time t

�1; if hunting hare and other player caught

prey at time t

0; otherwise

8>>>>>><
>>>>>>:

ð3Þ

The Critic’s state table was updated by:

V s, t+ 1ð Þ=V s, tð Þ+ d(t) ð4Þ

Equations 1–4 were applied after each move to update
the weights in the Reward and Cost Critic state tables.

The Actor’s weights were updated according to
Equations 5, 6, and 7. Equation 5 is given for the con-
dition in which the Adapt agent hunted a hare.

V hare, s, t+ 1)ð Þ=V hare, s, tð Þ+ 1� p hare½ ��d tð Þ

V stag, s, t + 1)ð Þ=V stag, s, tð Þ � p stag½ ��d(t) ð5Þ

V hare, s, tð Þ was the Actor’s state table value for hunt-
ing a hare in state s at time t. Likewise, V stag, s, tð Þ was
the Actor’s state table value for hunting a stag in state s
at time t. d tð Þ was the delta value from both the Reward
and Cost Critics. Equation 6 is given for the condition
in which the Adapt agent hunted a stag.

V stag, s, t+ 1)ð Þ=V stag, s, tð Þ+ 1� p stag½ ��d tð Þ

V hare, s, t + 1)ð Þ=V hare, s, tð Þ � p hare½ ��d(t) ð6Þ

Equations 5 and 6 were applied for both the Reward
and Cost Critic. The probability for hunting a hare,
p hare½ �, or stag, p stag½ �, was given by the SoftMax
function:

p hare½ �= eV (hare, s, t)

eV (hare, s, t) + eV (stag, s, t)

p stag½ �= 1� p½hare� ð7Þ

At each turn, Equation 7 was used to choose the agent’s
prey. The agent would then move one square closer to
the stag, if stag was chosen, or one square closer to the
nearest hare, if a hare was chosen.

2.4 Experimental design

Data for each subject were collected simultaneously on
forty Dell desktop computers in the ESSL, with each
subject separated by privacy boards to prevent distrac-
tion and discussion between subjects. The subjects first
watched a narrated PowerPoint presentation, which
provided a standardized explanation of the purpose
and instructions for the experiment. Subjects were
informed at this time that they would receive both a
baseline compensation for participation as well as an
incentive payment that was dependent on their perfor-
mance in the experiment game play. The subjects next
participated in a training session in which they played
ten games of the Stag Hunt against a random-acting
agent; the results from these ten games did not count
towards the subjects’ final scores. The experimental ses-
sion then consisted of 250 games of Stag Hunt, divided
equally between five rounds. Each subject played the
Stag Hunt game against all five of the computer agents
(as discussed above) in rounds of 50 games, one round
per agent type, with the rounds presented in a random
order for each subject. Subjects were aware of switches
between the agents, but they were not given any infor-
mation on the agent’s strategy. Data for each subject
were saved to text files, which were then compiled using
Netsupport School computer software.

Following completion of the experiment, all subjects
received a US$7 standard payment for experimental
participation as well as compensation based on their
performance at the rate of US$ 0.02 for each point won
during the experimental session. Four points were
awarded for catching a stag, or US$ 0.08, one point for
catching a hare, or US$ 0.02, and zero points for not
catching a target or allowing the 10-second timer to
run out during a game. End of experiment payments
ranged from US$10 to US$21.

3 Results

The Adapt agent demonstrated the ability to adapt to
the subjects’ gameplay by taking into consideration the
subjects’ position with regard to game tokens. An anal-
ysis of the Actor state tables was performed to show
the likelihood to hunt hare based on the distances of
the Adapt agent and the subject from the stag and the
closest hare. The Adapt agent was more likely to hunt
a stag if it was further away from a hare (Figure 4a) or
if the other player was further away from a hare
(Figure 4b). Figures 4(c) and 4(d) show the Adapt
agent was more likely to hunt a stag if either it or the
other player were near a stag. These results show that
the Actor–Critic algorithm was not only sensitive to its
own position on the game board, but was also monitor-
ing the other player’s position.

Subject performance varied depending on the type
of agent played (Figure 5; Table 2). In all cases, the
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agents’ scores were similar to human scores, indicating
that the two opponents were fairly matched. EQStag
was shown to produce significantly higher overall sub-
ject scores than all other agent strategies, followed by
WSLS, which produced significantly higher scores than
the remaining three conditions. These high scores were
due to the subjects gravitating towards cooperation and
the high-payoff equilibrium of hunting stags. Subjects
had the lowest scores against EQHare agents, because
they were forced to compete against their opponents
for low-payoff hares. Playing with Adapt and Random
agents resulted in significantly higher scores than
EQHare and lower scores than EQStag and WSLS;
however, they were not found to be significantly differ-
ent from each other. Successfully hunting hare in all
games would have resulted in a score of 50, while
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Figure 4. Scatter plot of Actor state table data. Data for all subjects were taken from the Actor state tables of the Actor–Critic
models used in the Stag Hunt experiment. (a) shows the probability for the adapting agent to hunt the closest hare from each
possible distance to closest hare target, while (b) shows the probability of the agent to hunt the closest hare from each possible
distance of the subject to the closest hare target. (c) shows the probability for the agent to hunt the stag from each possible distance
to the stag, while (d) shows the probability of the agent to hunt the stag from each possible distance from the subject to the stag.
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Figure 5. Subject scores against agent strategy. For each
boxplot, the central mark is the median, the edges of the box
are the 25th and 75th percentiles, the whiskers extend to the
most extreme data points not considered outliers, and outliers
are plotted individually as ‘+ ’ symbols. The data were not
normally distributed; therefore subject performance against
different agents was compared using Wilcoxon rank-sum tests
(Bonferroni corrected, p< .005 was considered significant). The
graph depicts the subject scores when playing with different
agent strategies: Adapt, EQHare, EQStag, Random, and Win–
Stay–Lose–Shift (WSLS). Scores were averaged over all subjects
during the Stag Hunt experiment (Table 2).

Table 2. p-values for Wilcoxon rank-sum pairwise
comparisons of average subject scores in each condition.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 < .0001 .9090 < .0001
EQHare < .0001 < .0001 < .0001
EQStag < .0001 < .0001
Random < .0001
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successfully hunting stag in all games would have
resulted in a score of 200. Because subjects had scores
higher than 50, yet lower than 200, this implies that
subjects switched between hare and stag hunting
against Adapt and Random agents rather than tending
toward the hare or stag equilibrium. Furthermore, the
wider range of scores when comparing Adapt to
Random suggests that subjects had more difficulty fig-
uring out the Adapt agent’s strategy.

To understand how individual subjects altered their
strategy when playing with different agents, we calcu-
lated the normalized ratios of stag to hare catches for
each subject in each condition (Figure 6). The ratio was
calculated by using the equation,

qstag:hare =(nstag � nhare)=(nstag + nhare) ð8Þ

in which qhare:stag represents the normalized ratio of
stags to hares, nstag represents the total number of stags
caught for that subject over all games in the condition,
and nhare represents the total number of hares caught
for that subject over all games in the condition. Each
ratio falls along a scale between negative one and posi-
tive one, negative one representing EQHare and posi-
tive one representing EQStag. In order to show the
distribution of hunt behavior in subjects, Figure 6
shows how the subject hunted with an EQStag,
Random, WSLS, and Adapt agent. We omitted the his-
togram for EQHare, as it was only possible for either
player to catch a hare when playing with this strategy,
and thus all data points were at negative one. Also, two
subjects were omitted from this analysis for not suc-
cessfully catching any stags or hares in the Adapt and
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Figure 6. Ratio of stag to hare catches for all participants. The ratio of stag to hare catches was calculated by the equation
qhare:stag = (nstag � nhare)=(nstag + nhare), in which qhare:stag is the ratio for a given subject, nstag is the number of stags captured during a
given condition, and nhare is the number of hares captured during a given condition. Values of positive one indicate exclusive stag
hunting (EQStag), while values of negative one indicate exclusive hare hunting (EQHare). The histograms display the ratio data for
(a) EQStag, (b) Random, (c) WSLS, and (d) Adapt agents. Note that the y-axis differs between Adapt/Random and EQStag/WSLS in
order to better observe the shape of the data.

378 Adaptive Behavior 21(5)

 at UNIV CALIFORNIA IRVINE on September 11, 2013adb.sagepub.comDownloaded from 

http://adb.sagepub.com/


WSLS conditions. As expected, subjects showed a bias
toward stag hunting when playing against EQStag
(Figure 6a), which suggests that they found a high-
payoff equilibrium. In Figure 6(b), subjects playing a
Random agent had a somewhat normal distribution of
hunting tendencies with the peak being a mixture of
stag and hare hunting. In Figure 6(c), subjects playing
a WSLS agent had a bias toward stag hunting, as was
also seen in EQStag, and was likely a result of the high-
payoff equilibrium. In Figure 6(d), subjects playing the
Adapt agent had a trimodal distribution: (1) those

preferring the cooperative equilibrium, (2) those prefer-
ring the non-cooperative equilibrium, and (3) those
who were equally split between those two extremes.

Table 3 shows each individual subject’s hunting bias
for each condition, as indicated by their normalized
ratios, with darker colors representing stronger biases
toward stag or hare equilibrium. EQHare was again
omitted, because subjects could only capture a hare in
this condition. As shown by the table, many subjects
were biased to stag or hare hunting across different con-
ditions. For example, Subjects 11, 13, 15, 38, 55, and 57

Table 3. Color-coded chart of equilibrium alignment for individual subjects against each agent strategy.

The key shows the ratio, with green colors representing strong stag hunting equilibrium, and red colors representing strong hare hunting equilibrium.

Darker shades represent a stronger bias, and white represents minimal to no bias. The majority of subjects displayed positive/moderate ratios

throughout conditions, and those who displayed strongly negative ratios often remained negative or weakly biased throughout conditions.
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remained strong stag hunters in multiple conditions,
including the Adapt condition. Some subjects showed
hare equilibrium tendencies across multiple conditions
(i.e., Subjects 12, 14, 34, 41). These results suggest that
subjects may have tendencies toward cooperation or
non-cooperation. However, Subjects 36, 37, and 52
tended toward hare hunting in the Adapt condition but
not in other conditions, implying that the Adapt agent
evoked a shift in strategy in some subjects.

Subjects’ paths were analyzed to determine the
directness of their movements by measuring the amount
of deviation from a direct path connecting their first
movement toward their final destination at the end of
the game, referred to as the ‘‘direct path’’. The games
were analyzed over all outcomes (Figure 7a; Table 4),
and also specifically games in which the subject failed
to catch either a stag or a hare (Figure 7b; Table 5).
Failures, in particular, were analyzed, because the path
deviation provided extra information as to why the sub-
ject failed to catch a target; for example, indicating an
attempt to observe the agent, attempting to hunt the
stag while the agent hunted hare, etc. Path deviation
was calculated by finding the length of the direct path
(distance between the first and last moves of each sub-
ject in each game) and subtracting that number from
the subject’s total distance traveled in each game (calcu-
lated by summing the distances between each move).
All comparisons were performed on the average path
deviation ratio for each subject per agent strategy. In
the rank-sum analysis for path deviation over all
games, EQHare showed smaller average deviations

from all other conditions. Adapt showed nearly signifi-
cantly larger deviations from Random and WSLS. No
other comparisons were shown to be significantly dif-
ferent. However, in the rank-sum analysis for losses
(Figure 7b; Table 5), Adapt was found to have signifi-
cantly larger path deviations from all other agent stra-
tegies. These results might indicate that subjects
realized that the adaptive agent’s actions were
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Figure 7. Average path deviation ratio over all subjects for each agent strategy. The boxplots have the same notation as in Figure 5.
The data were not normally distributed; therefore subject performance against different agents was compared using Wilcoxon rank-
sum tests (Bonferroni corrected, p< .005 was considered significant). The length of the direct path to the target was calculated by
measuring the distance between the first and last moves for each game of each subject. That distance was subtracted from the
subject’s total distance traveled in each game calculated by summing the distances between each move. Those differences were used
in the above graphs as the average path deviation for each agent strategy: Adapt, EQHare, EQStag, Random, and Win–Stay–Lose–
Shift (WSLS). (a) The average path deviations over all games and strategies. (b) The average path deviations for only the games in
which the subject did not successfully catch a stag or hare, in other words losing the game (Table 5).

Table 5. p-values for Wilcoxon rank-sum pairwise
comparisons of average subject path deviation ratio in each
condition over game losses.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 < .0001 < .0001 < .0001
EQHare < .0001 .6937 .0001
EQStag < .0001 < .0001
Random < .0001

Table 4. p-values for Wilcoxon rank-sum pairwise
comparisons of average subject path deviation ratio in each
condition over all games.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 .0419 .0054 .0052
EQHare < .0001 < .0001 < .0001
EQStag .4030 .3689
Random .9090
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malleable depending on subject behavior, and therefore
subjects attempted to guide the agent or wait for the
agent to change its target. EQHare and Random were
both shown to have significantly larger path deviations
than WSLS; however, they were not significantly differ-
ent from each other. EQStag had no analyzable loss
data because the only way to lose a game in EQStag
was to time out. All timeout data were removed before
analysis due to excessive skewing.

The path deviation of the Adapt agent was analyzed
in the same way as the human data. Performing the
path deviation analysis on the Adapt agent showed that
the average deviation per game over all subjects is 1.5
units (s = 0:4; compared with the human’s average
path deviation in Adapt, ;1.2). For reference, each of
the other agent types had an average path deviation of
1 (direct path) due to their inability to switch targets
mid-game. In addition to using path deviation to give
insight into the player’s intention, move data in the
Adapt condition were analyzed to see which player
arrived at the stag first. Subjects arrived first at the stag
36% (s = 16%) of the time stags were caught. The
indirect paths and tendency to get to the stag first on
many games, may suggest that subjects were trying to
guide the Adapt agent’s behavior.

To test how quickly subjects were making decisions,
the average time between mouse clicks and the number
of turns taken by the subjects were analyzed (Figure 8;
Tables 6 and 7). Subjects had significantly shorter
delays in the EQHare condition for mouse clicks than
all other conditions, and subjects had significantly lon-
ger delays in the EQStag condition when compared
with the Random condition (Figure 8a; Table 6).

Subjects took nearly significantly longer between mouse
clicks when playing with the Adapt agent compared
with the Random agent, and EQStag had nearly signifi-
cantly slower click times than WSLS. No other com-
parisons were significantly different. EQHare shows the
most dramatic difference with a very short click time,
indicating that in this condition, subjects had a target
and trajectory clearly in mind for each game and made
moves as quickly as possible. The increase in click time
for Adapt might indicate that the subjects invested
more time watching to see what moves the adaptive
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Figure 8. (a) The average time between mouse clicks for subjects during agent strategy: Adapt, EQHare, EQStag, Random, and
Win–Stay–Lose–Shift (WSLS). The data were not normally distributed; therefore subject performance against different agents was
compared using Wilcoxon rank-sum tests (Bonferroni corrected, p< .005 was considered significant). Each mouse click indicated a
desired movement on the game board or action taken to catch a stag or hare target performed by the subject. (b) The average
number of turns taken by subjects during each agent strategy. The number of turns was taken cumulatively for all games in a
particular strategy for each subject. The boxplots have the same notation as in Figure 5.

Table 6. p-values for Wilcoxon rank-sum pairwise
comparisons of average subject mouse click delays in each
condition.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 .3531 .0207 .2127
EQHare < .0001 < .0001 < .0001
EQStag .0009 .0279
Random .2235

Table 7. p-values for Wilcoxon rank-sum pairwise
comparisons of average subject turn counts for each condition.

Adapt EQHare EQStag Random WSLS

Adapt < .0001 .0327 < .0001 .3110
EQHare < .0001 < .0001 < .0001
EQStag < .0001 .0078
Random .0030
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agent would make before the subjects made their move-
ment decisions. Rank-sum tests were also run for the
differences between the average number of turns taken
by subjects over all games in each of the five conditions
(Figure 8b; Table 7). EQHare was found to have signif-
icantly fewer turns taken when compared with all other
conditions, followed by Random, which had signifi-
cantly fewer turns taken than the remaining three con-
ditions. EQStag was found to have nearly significantly
more turns taken than WSLS. Subjects took more turns
playing with the Adapt than with the Random agent.
Both the increased number of turns and high mouse
click delay indicate that the subjects were aware that
the adaptive agent was not acting randomly and may
show that the subjects attempted to guide the agent’s
behavior toward stag hunting to maximize payoffs.

4 Discussion

Economic game theory has had a long, productive his-
tory of predicting and describing human behavior in
cooperative and competitive situations (Maynard
Smith, 1982; Nowak, Page, & Sigmund, 2000; Skyrms,
2001). The theory of games has also been used to illumi-
nate the neural basis of economic and social decision-
making (M.D. Lee, 2008; Rilling & Sanfey, 2011).
However, these studies typically have human subjects
play against opponents with set-strategies and predictable
behavior. By introducing agents with the ability to adapt
to subject variation and the game environment, we were
able to evoke stronger strategic variation in our subjects.

Specifically, subjects played the socioeconomic game
known as the Stag Hunt because of its advantages for
studying cooperation, teamwork, and social signaling
(Skyrms & Pemantle, 2000; Skyrms, 2004). In a Stag
Hunt, subjects must weigh the decision of hunting a
valuable stag, which requires the cooperation of
another player, against hunting a hare, a less valuable
but more easily obtainable prey (i.e., cooperation is
unnecessary). Because it has both a cooperative and
non-cooperative equilibrium, as well as a temporal
aspect (e.g., hunters can change their decision as the
hunt progresses), the Stag Hunt may be a better model
of cooperation and intention than the Prisoner’s
Dilemma, Hawk–Dove, or Ultimatum Game.

The adaptive agent was constructed based on a var-
iant of the Actor–Critic model, which contained one
Critic that learned the expected reward of an action
and another Critic that learned the expected cost of an
action. The model was similar to prior work in which a
computational model of neuromodulation and action
selection was developed based on the assumptions that
dopamine levels were related to the expected reward of
an action, and serotonin levels were related to the
expected cost of an action (Asher, Zaldivar, &
Krichmar, 2010; Zaldivar, Asher, & Krichmar, 2010).

The dopaminergic and serotonergic systems have been
shown to influence the evaluation of rewards and costs
for future decisions respectively, and have a strong
influence on social decision-making (Boureau &
Dayan, 2010; Cools, Nakamura, & Daw, 2010;
Krichmar, 2008).

The main findings of the present study involve the
differences in subject behavior when playing with an
adaptive model, as opposed to preset, predictable com-
puter strategies and purely random strategies. We
found significant differences in scores, deviation from a
direct path to the desired target, delay between move-
ment mouse clicks, and the ratio of stags to hares
caught. It was found that subjects had more variation
and uncertainty in their play with the Adapt agent.
Additionally, close examination of the Adapt agent
revealed that it not only altered play based on its own
position on the game board, but also monitored the
human players’ relative locations on the board. Lastly,
our findings indicate that there may be a divide in the
subject pool that defines two distinct types of reactions
to the adaptive model: those that become highly coop-
erative by primarily hunting stag with other players
and those that become highly uncooperative by primar-
ily hunting hare on their own.

Subjects playing with an adaptive agent may be
investing more time and effort in trying to discover the
agent’s strategy, recognizing that a strategy was, in
fact, being used rather than the agent taking random
actions. As seen in Figure 8(b), subjects took signifi-
cantly more turns when playing with the Adapt agent
than the Random agent. This could indicate either that
players were attempting to influence the agent’s actions
by executing guiding movements toward the desired
target, or that players found it necessary to change
their strategies mid-game, abandoning their first target
to pursue a different target as the agent’s actions
became clearer. In further investigation of the guiding
hypothesis, the data were analyzed to determine which
player arrived at the stag first in the Adapt condition
on average. This was decided by identifying the player
who landed within one square of the stag first. Subjects
arrived first in over 1/3 of the games, indicating that,
on many trials, the subject attempted to show the
Adapt agent cooperative intention. Further support for
the idea of subject observation and strategizing was the
finding that the adaptive agent was shown to cause
somewhat longer delays between mouse clicks than the
random agent (Figure 8a), indicating that subjects
spent a longer time thinking about their moves with the
Adapt agent than with the Random agent. This extra
time was likely used either to estimate the pattern of
the adaptive agent’s moves in order to choose the best
target, or to develop a strategy to guide the adaptive
agent towards the desired target.

Subjects showed greater uncertainty and varied
strategy in play with the adapting agent compared with
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other conditions. In Figure 5, the average scores for
Adapt were significantly different from every other
condition except Random. However, the wider var-
iance of the quartiles in Adapt suggests that some sub-
jects varied their responses, possibly in an attempt to
shape the adaptive agent’s actions. This conclusion is
compatible with the interpretation of the results in
Figure 8, because the extra turns and extra time spent
considering possible outcomes in the Adapt condition
may also be an attempt to influence the adaptive agent.
The path deviation analysis further supports these
claims. Subjects deviated from a straight path more
when playing with the Adapt agent, as opposed to
other agents (Figure 7), providing more evidence that
the Adapt condition may encourage subjects to either
change their strategy mid-game or that they attempted
to use guiding moves to influence the adaptive agent’s
behavior. Again, the significant difference between
Adapt and Random underscores the point that the sub-
jects treated the adaptive agent as if the agent was using
a complex strategy rather than acting randomly. Figure
7(b) shows an even more pronounced difference
between Adapt and the other conditions when compar-
ing only the games in which the subjects did not suc-
cessfully catch their target and were beaten by the
computer. This result is likely found, because in any
condition besides Adapt, when the subject loses a
game, it happens quickly as the agent is simply heading
straight for a hare target. The adaptive agent is not
likely to simply rush to a hare target unless it has been
trained to do so by a frequently uncooperative subject.

In the Adapt condition, the agent is able to ‘‘change
its mind’’ in deciding what target it will pursue mid-
game, meaning that the path to a target for the adaptive
agent is not as clear-cut and may change. This indicates
that more thought on the part of subjects was put into
interpreting the movements of the adaptive agent than
any of the other strategies. The analysis of path devia-
tion conducted for the Adapt agent showed a slightly
higher, but still comparable average value to the aver-
age human path deviation. The Adapt agent’s path
deviation behavior indicates that it was interpreting the
players’ positions on the board and using past payoff
information to determine its best strategy on any given
turn.

When considering the Actor state tables, it becomes
clear that the adaptive agent was in fact able to learn
when to hunt stag and when to hunt hare depending
upon both the agent’s position and the subject’s posi-
tion to either target (Figure 4). The closer the agent
was to the hare or the further the agent was from the
stag, the higher its probability to hunt hare. However,
the adaptive agent also considered the state of the other
player. The closer the human subject was to the hare
and the further the subject was from the stag, the more
likely the adaptive agent would hunt hare. There were
many cases in which the Adapt agent did not

demonstrate a clear strategy and switched its hunting
goal mid-game. For example, when the agent or the
subject was far away from the stag, the probability to
hunt a particular prey was roughly at chance. This
result could be improved upon in future experiments
by allowing the adaptive agent to play more games
with the subject, therefore providing the agent more
time to learn and develop its state tables, or by training
different agents off-line (i.e., playing non-naı̈ve agents).
For the sake of the length of this experiment, however,
the number of games per condition was capped at 50,
the threshold found in simulation at which the agent
began to exhibit strong strategic biases.

The possibility of three distinct groups within the
subject pool is suggested by the stag-to hare-catch ratio
data of the Adapt condition (Figure 6d). About half of
the subjects in the Adapt data form clusters at the
extremes of the distribution, indicating a bias toward
exclusive stag-hunting or exclusive hare-hunting, while
the remainder tended to switch between stag and hare
catching (see peak in the middle of Figure 6d). In con-
trast, the ratio of stag-to-hare catching against Random
agents was somewhat normally distributed with a peak
towards equal stag and hare hunting (Figure 6b). This
implies that playing with the Adapt agent evoked differ-
ent responses in some subjects over others, either
encouraging strong cooperation or strong competition.
For comparison, Figure 6(a) shows the EQStag data
and Figure 6(c) shows the WSLS data. Both EQStag
and WSLS appear to be heavily biased towards
EQStag. In the case of EQStag, stag hunting was obvi-
ously encouraged by the fact that the agent hunted only
stag. In the WSLS condition, if the subject beat the
agent once at catching a hare target, the agent would
attempt to hunt stag in the next game and would con-
tinue stag hunting as long as the subject was also hunt-
ing stags, which subjects playing to maximize their
score should have done as predicted by game theory.
Accompanying these histograms, the equilibrium table
(Table 3) shows each individual subject’s personal bias
in hunting over those four conditions, implying that
many subjects had tendencies to cooperate and compete
in this context, and that some subjects were strongly
influenced to change those biases when playing against
an Adapt agent (e.g., see Subjects 33, 36, 37, and 52 in
Table 3).

The suggestion that two or more types of strategies
can emerge among individuals when playing socioeco-
nomic games is similar to conclusions found in Asher
et al.’s study regarding HCI/HRI in the game of
Hawk–Dove using an adaptive model (Asher, Zhang,
et al., 2012). The conclusions drawn from their ATD
data indicated a division in their subject pool very simi-
lar to the divide found in the current experiment. Their
subjects, when tryptophan-depleted, fell into one of
two groups; either more cooperative or more competi-
tive during games, much like the present study’s
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subjects while playing against the adaptive agent. The
present study is further comparable in that the Reward
and Cost Critics used here resemble the serotonergic/
dopaminergic systems inspiring the model in Asher’s
study.

Variation between individuals in socioeconomic
games may be due to differences in dopamine and sero-
tonin signaling (Bevilacqua & Goldman, 2011; Hyde,
Bogdan, & Hariri, 2011; Loth, Carvalho, & Schumann,
2011). For instance, a variation of an upstream promo-
ter region of the serotonin transporter gene
(5-HTTLPR) has been shown to influence both beha-
vioral measures of social anxiety and amygdala
response to social threats in humans (Caspi, 2003;
Caspi, Hariri, Holmes, Uher, & Moffitt, 2010; Hariri,
2002; Lesch et al., 1996; Young et al., 2007). Subjects
carrying the short allele variant of 5-HTTLPR outper-
form subjects with the long allele in an array of cogni-
tive tasks and show increased social conformity
(Homberg & Lesch, 2011). Polymorphisms in dopami-
nergic genes, including variable number tandem repeat
(VNTR) polymorphisms in DRD4 and DAT1, have
been associated with poor ‘action restraint’ and ‘action
cancellation’ (Congdon, Lesch, & Canli, 2008; Munafò,
Yalcin, Willis-Owen, & Flint, 2008). The prevalence of
such polymorphisms in the human population suggests
that there is an evolutionary advantage for this varia-
bility, such as optimizing competition or cooperation in
different situations. Thus, investigating this variation in
games such as the Stag Hunt may be promising.

Several simulation studies are pertinent to the pres-
ent results. The cooperation aspect of game theory was
also explored in studies such as Valluri (2006), where a
variant of the Prisoner’s Dilemma was used in a simula-
tion with adaptive agents. The Prisoner’s Dilemma was
altered such that cooperation was able to evolve, albeit
against classical game theory predictions, by being iter-
ated and sequential. This means that agents played
games repeatedly against the same opponents, with the
second player knowing the first player’s action before
deciding on their own action rather than both players
making their actions simultaneously. A Q-learning algo-
rithm controlled agents with a similar SoftMax function
as the one used in the current experiment. Because this
version of Prisoner’s Dilemma was able to evoke coop-
eration in its agents, it is comparable to the Stag Hunt.
The link between the sequential iterated Prisoner’s
Dilemma and the Stag Hunt is the ability to see inten-
tionality before making an action. In Valluri (2006), the
ability of the agents to reach cooperation was attributed
to the sequential nature of turns rather than the tradi-
tional simultaneous action selection. In the version of
the Stag Hunt used in the present experiment, players
could see the path of the agent and choose their actions
based on that knowledge. In this way, the present meth-
ods agree with this prior simulation study. In a study by
Calderon (2006) using the Ultimatum Game, a

simulation model of phenotypic plasticity was used in
order to determine the evolution of cooperation in a
population. The results showed that when plasticity was
increased, cooperation was also increased in terms of
the threshold for acceptance and the offer amount.
Agents learned at the end of each game; proposers
increased the amount they offered by one if their offer
was accepted, and decreased their offer by one if it was
rejected in the last game. The same alterations were
made by recipients for their acceptance threshold. The
games played were strictly one-shot, as the agents did
not retain knowledge of whom they had played or what
their previous payoffs were. In the Ultimatum game,
cooperation is contingent on reaching middle ground in
which the proposer and the recipient both agree on the
division of the resource. Calderon found that in his con-
trol group, which did not exhibit plasticity, the relative
fitness was higher than in the group with plasticity
(2006). Although this result appears to be a strike
against adapting agents, Calderon states that the reason
this occurs is that in any case where two individuals
share a behavior, the agent who had that behavior
innately will outperform the adapting agent due to the
adaptive agent’s initial learning cost. This comparison is
very similar to the comparison of the EQStag and
Adapt agents in the present study, as higher scores were
achieved when playing against the EQStag agent. While
the EQStag agent began at cooperative equilibrium,
there was inevitably a large cost accrued in the learning
period needed for the Adapt agent to learn cooperation
and the subject to adapt to the Adapt agent.

The results of the present experiment have brought
up some interesting observations for future study. The
variation in individual subject strategy differences while
playing with the adaptive agent suggests that there may
be phenotypical variation influencing this behavior.
Additionally, the unique response overall to the adap-
tive agent in comparison to set-strategy agents invites
further exploration of the adaptive agent’s ability to
evoke a social response akin to that of playing against
another subject. In a future study, these two observa-
tions will be explored through their neural correlates
to, in the case of the first observation, distinguish a dif-
ference in brain activity between the two equilibrium
players, and in the case of the second observation, show
the difference in response between adaptive agent oppo-
nents and other human opponents. This study will both
qualify and quantify the adaptive agent’s effect on sub-
jects seen in the present experiment.

5 Conclusion

The main goal achieved by the present study was to
show that adaptive agents were in fact able to create a
significantly different response in human subjects than
that of set-strategy agents. Adaptive agents are useful
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for interacting in a game environment due to their
unique ability to evoke complex and interesting results
in human subjects while learning strategies of their own
from both experience and subjects’ behavior. Having
the experiment situated in a game allows for a level of
control and customization that is valuable when con-
ducting experiments of any degree of specificity.
Because of the unavoidable degree of unpredictability
encountered when using exclusively human subjects,
the level of control afforded by the use of an adaptive
agent is also desirable. The secondary goal achieved by
the present study was to create computer agents that
were able to learn in real-time without deliberate feed-
back outside of the game environment and have those
agents mimic human behavior enough for subjects to
learn to trust and cooperate with them in a relatively
short time span. The ability of the adaptive agent to
evoke a more complex reaction in human players war-
rants study into the social effects of human–robot
interaction using robots that are able to better emulate
complex strategies humans would use in a game envi-
ronment. Future research in the field of adaptive agents
may lead to robot or computer interfaces that are more
natural or sociable, providing a smoother transition of
complex technology into everyday life. In addition,
adaptive agents have the potential to add a heightened
degree of realism to HRI, specifically for socially affec-
tive robots (Thomaz & Breazeal, 2008).
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